C.04.1 - BASIC RULES FOR SWISS SYSTEMS

BASIC RULES FOR SWISS SYSTEMS

Approved by the Council on 28/10/2025

Applied from 1st February, 2026

The following rules are valid for each Swiss system unless explicitly stated otherwise:

- 1. The number of rounds to be played is declared beforehand.
- 2. Two participants shall not play against each other more than once.
- 3. Should the number of participants to be paired be odd, one participant is not paired. This participant receives a pairing-allocated bye: no opponent, no colour and as many points as are rewarded for a win, unless the rules of the tournament state otherwise. This number of points shall be the same for all pairing-allocated byes.
- 4. A participant who has already received a pairing allocated bye, or has already scored in one single round, without playing, as many points as rewarded for a win, shall not receive the pairing allocated bye.
- 5. In general, participants are paired to others with the same score.
- 6. For each participant the difference between the number of rounds they play with Black and the number of rounds they play with White shall not be greater than 2 or less than -2. Each pairing system may have exceptions to this rule.
- 7. No participants shall receive the same colour three times in a row. Each pairing system may have exceptions to this rule.
- 8. In general, a participant is given the colour with which they played fewer rounds. If colours are already balanced, then, in general, the participant is given the colour that alternates from the last one with which they played.
- 9. The pairing rules must be such transparent that the person who is in charge for the pairing can explain them.

C.04.2 - GENERAL HANDLING RULES FOR SWISS TOURNAMENTS

GENERAL HANDLING RULES FOR SWISS TOURNAMENTS

Approved by the Council on 28/10/2025

Applied from 1st February, 2026

1. Pairing Systems

- 1.1 The pairing system used for a FIDE rated Swiss tournament should be one of the published FIDE Swiss Systems. Accelerated methods are acceptable if they were announced in advance by the organiser and are published under FIDE-Approved Accelerated Systems.
- 1.2 Pairing systems or accelerated methods not published by FIDE may be permitted, provided that a detailed written description of their rules:
 - 1.2.1 be submitted in advance to the Qualification Commission (QC) and temporarily authorised by them; and
 - 1.2.2 be included in the tournament regulations and explicitly presented to the participants before the start of the tournament.
- 1.3 While reporting a tournament to FIDE, the Chief Arbiter shall declare which official FIDE Swiss system and acceleration method (if any) were used, or provide the temporary authorisation(s) given by the QC as per Rule 1.2.1.
- 1.4 The Swiss Pairing Systems defined by FIDE pair the participants in an objective, impartial and reproducible manner. In any tournament where such systems are used, different arbiters, or different tournament handler programs approved by FIDE, must be able to arrive at identical pairings. However, the use of such systems is deprecated, unless a tournament handler program approved by FIDE is available for them, provided with a free pairing-checker able to verify tournaments run with that system.
- 1.5 It is not allowed to alter the correct pairings in favour of any participant. Where it can be shown that modifications of the original pairings were made to help a player achieve a norm or a direct title, a report may be submitted to the QC to initiate disciplinary measures through the Ethics and Disciplinary Commission.

2. Initial Order and Late Entries

- 2.1 Before the start of the tournament, a measure of the participant's strength is assigned to each participant. The strength is usually represented by rating lists of the players. If one rating list is available for all participating players, then this rating list should be used. It is advisable to check all ratings supplied by players. If no reliable rating is known for a player, the Chief Arbiter should make an estimation of it as accurately as possible.
- 2.2 Before the first round the participants are ranked in order of, respectively
 - 2.2.1 Strength (for example ratings)
 - 2.2.2 FIDE-title (GM-IM-WGM-FM-WIM-CM-WFM-WCM-no title), for individual tournaments
 - 2.2.3 Alphabetically (unless it has been previously stated that this criterion has been replaced by another one)
- 2.3 This ranking is used to determine the participant's Tournament Pairing Number ("TPN"); the highest ranked participant gets #1 etc. If, for any reason, the data used to determine the rankings were not correct, they can be adjusted at any time. The TPNs may be reassigned accordingly to the corrections. No modification of a TPN for this reason is allowed after the fourth round has been paired.
- 2.4 A Late Entry is a participant who is only taken into account for the pairing of rounds after the first. If admitted to the tournament, late entries receive no points for unplayed rounds (unless the rules of the tournament say otherwise), and are given an appropriate TPN and paired only when they actually arrive.
- 2.5 Due to late entries, the TPNs given at the start of the tournament are provisional. The definitive TPNs are given only when the List of Participants is closed, and corrections made accordingly in the results charts.

C.04.2 - GENERAL HANDLING RULES FOR SWISS TOURNAMENTS

3. Pairing, Colour and Publishing Rules

- 3.1 Adjourned games (in an individual competition) or adjourned matches (in a team competition) are considered draws for pairing purposes only.
- 3.2 Participants who withdraw from the tournament will no longer be paired.
- 3.3 Participants known in advance not to play in a particular round are not paired in that round and score zero (unless the rules of the tournament say otherwise).
- 3.4 Only played games or matches count in situations where the colour sequence is meaningful. So, for instance, a participant with a colour history of BWBuW ("u" for unplayed, i.e. no valid game or match in round-4) will be treated as if their colour history was uBWBW. WBuWB will count as uWBWB, BWWuBuW as uuBWWBW and so on.
- 3.5 Two paired participants, who did not play their game or match, may be paired together in a future round.
- 3.6 After a pairing is complete, sort the pairs before publishing them. The recommended sorting criteria are (with descending priority):
 - 3.6.1 the highest score of the higher ranked participant of the involved pairs;
 - 3.6.2. the highest sum of the scores of both participants of the involved pairs;
 - 3.6.3 the smallest TPN of the higher ranked participant of the involved pairs.

C.04.2 - GENERAL HANDLING RULES FOR SWISS TOURNAMENTS

4. Competition Rules

- 4.1 Any prospective participants who have not confirmed their presence to a FIDE competition before the time scheduled for the drawing of lots shall be excluded from the tournament unless the Chief Arbiter decides otherwise.
- 4.2 The results of a round shall be published at the usual place of communication at announced time due to the schedule of the tournament.

4.3 If either

- 4.3.1 a result was written down incorrectly, or
- 4.3.2 a game or a match was played with the wrong colours, or
- 4.3.3 a player's rating has to be corrected,

and this is notified to the Chief Arbiter within a given deadline after publication of results, the new information shall be used for the standings and the pairings of the next round. The deadline shall be fixed in advance according to the timetable of the tournament. If the error is notified after the pairing but before the end of the next round, it will affect the next pairing to be done. If the error is notified after the end of the next round, the correction will be made after the tournament and only for submission to rating evaluation.

- 4.4 Once published, the pairings shall not be changed unless one of the following situations occurs and the Chief Arbiter considers that changing the pairings is in the best interest of the tournament:
 - 4.4.1 the accidental pairing of two participants who have already played each other
 - 4.4.2 the rules of the specific competition explicitly allow the Chief Arbiter to modify the pairings
 - 4.4.3 two participants close in the standings are without an opponent and both agree to play each other
 - 4.4.4 a late entry is admitted to the tournament, the changes to the published pairings are minimal and are agreed by all participants involved
 - 4.4.5 unforeseeable circumstances (such as a sudden withdrawal or an incorrectly recorded result) affect the top boards of the final round (Note: "top boards" are those identified as such by the Chief Arbiter)

FIDE (DUTCH) SYSTEM

Approved by the Council on 28/10/2025

Applied from 1st February, 2026

0. Terms and Definitions

Terms and Definitions added at the 88th FIDE Congress in Goynuk 2017. See https://tec.fide.com/2025-fide-dutch-terms-and-definitions.

1. Introductory Remarks and Definitions

1.1 Tournament Pairing Number (TPN)

For the definition and management of TPNs, see Article 2 of the General Handling Rules for Swiss Tournaments (Initial Order and Late Entries).

1.2 Order

For pairings purposes only, the players are ranked in order of, respectively

- 1.2.1 Score
- 1.2.2 TPN (in ascending order)

1.3 Scoregroups and Pairing Brackets

- 1.3.1 A scoregroup is composed of all the players with the same score.
- 1.3.2 A (pairing) bracket is a group of players to be paired. It is composed of players coming from a non-empty scoregroup (called resident players) and (possibly) of players who remained unpaired after the pairing of the previous bracket.
- 1.3.3 A (pairing) bracket is homogeneous if all the players have the same score; otherwise, it is heterogeneous.
- 1.3.4 A remainder pairing bracket ("remainder") is a sub-bracket of a heterogeneous bracket, containing some of its resident players (see Article 3.3 for further details).

1.4 Floaters and Floats

- 1.4.1 A downfloater is a player who remains unpaired in a bracket and is thus moved to the next bracket. In the destination bracket, such players are called "moved-down players" (MDPs for short).
- 1.4.2 After two players with different scores have played each other in a round, the higher ranked player (see Article 1.2) receives a downfloat, the lower one an upfloat.
- 1.4.3 A downfloat is also given to any player who receives a pairing-allocated bye (see Article 1.5) or who, without playing in a round, scores more points than those rewarded for a loss.

1.4.4 No players other than those listed in the previous two articles can receive floats.

1.5 Pairing-Allocated Bye ("PAB")

See Article 3 of the Basic Rules for Swiss Systems (Should the number of participants to be paired be odd, one participant is not paired. This participant receives a pairing-allocated bye: no opponent, no colour and as many points as are rewarded for a win, unless the rules of the tournament state otherwise. This number of points shall be the same for all pairing-allocated byes).

1.6 Colour Difference

The colour difference of a player is the number of games played with White minus the number of games played with Black by this player.

1.7 Colour Preference

The colour preference is the colour that a player should ideally receive for the next game. It can be determined for each player who has played at least one game.

- 1.7.1 An absolute colour preference occurs when a player's colour difference is greater than +1 or less than -1, or when a player had the same colour in the two latest rounds they played. The preference is for White when the colour difference is less than -1 or when the last two games were played with Black. The preference is for Black when the colour difference is greater than +1, or when the last two games were played with White.
- 1.7.2 A strong colour preference occurs when a player's colour difference is +1 (preference for Black) or -1 (preference for White).
- 1.7.3 A mild colour preference occurs when a player's colour difference is zero, the preference being to alternate the colour with respect to the previous game they played.
- 1.7.4 Players who did not play any games have no colour preference (the preference of their opponents is granted).

1.8 Topscorers

Topscorers are players who have a score of over 50% of the maximum possible score when pairing the final round of the tournament.

1.9 Round-Pairing Outlook

- 1.9.1 The pairing of a round (called round-pairing) is complete if all the players (except at most one, who downfloats from the last bracket and receives the pairing-allocated bye) have been paired and the absolute criteria [C1]-[C3] (see Article 2.1) have been complied with.
- 1.9.2 The pairing process starts with the top scoregroup, and continues bracket by bracket until all the scoregroups, in descending order, have been used and the round-pairing is complete.

1.9.3 If it is impossible to complete a round-pairing, the Chief Arbiter shall decide what to do.

Note: Article 2 defines all the criteria that the pairing of a bracket has to satisfy (in order of priority).

Article 3 describes the procedures for pairing a bracket.

Article 4 defines the rules for the sequential generation of the pairings.

Article 5 defines the colour allocation rules that determine which players will play with White.

2. Pairing Criteria

2.1 Absolute Criteria

No pairing shall violate the following absolute criteria:

- 2.1.1 [C1] See the Basic Rules for Swiss, Article 2 (Two participants shall not play against each other more than once).
- 2.1.2 [C2] See the Basic Rules for Swiss, Article 4 (A participant who has already received a pairing-allocated bye, or has already scored in one single round, without playing, as many points as rewarded for a win, shall not receive the pairing-allocated bye).
- 2.1.3 [C3] Non-topscorers (see Article 1.8) with the same absolute colour preference (see Article 1.7.1) shall not meet (see the Basic Rules for Swiss, Articles 6 and 7).

2.2 Completion Criterion

2.2.1 [C4] A pairing complying with all the absolute criteria (see Article 2.1) shall always exist for all players not yet paired.

2.3 PAB Criterion

2.3.1 [C5] Minimise the score of the assignee of the pairing-allocated-bye.

2.4 Quality Criteria

To obtain the best possible pairing for a bracket, comply as much as possible with the following criteria, given in descending priority:

- 2.4.1 [C6] Minimise the number of downfloaters (equivalent to: maximise the number of pairs).
- 2.4.2 [C7] Minimise the scores (taken in descending order) of the downfloaters.
- 2.4.3 [C8] Choose the set of downfloaters so that in the following bracket every criterion from [C1] to [C7] (see Articles 2.1 to 2.4.2) is complied with.
- 2.4.4 [C9] Minimise the number of unplayed games of the assignee of the pairing-allocated-bye.

- Note: Apply to brackets that downfloat exactly one player, who will end up receiving the pairing-allocated bye.
- 2.4.5 [C10] Minimise the number of topscorers or topscorers' opponents who get a colour difference higher than +2 or lower than -2.
- 2.4.6 [C11] Minimise the number of topscorers or topscorers' opponents who get the same colour three times in a row.
- 2.4.7 [C12] Minimise the number of players who do not get their colour preference.
- 2.4.8 [C13] Minimise the number of players who do not get their strong colour preference.
- 2.4.9 [C14] Minimise the number of resident downfloaters who received a downfloat the previous round.
- 2.4.10 [C15] Minimise the number of MDP opponents who received an upfloat the previous round.
- 2.4.11 [C16] Minimise the number of resident downfloaters who received a downfloat two rounds before.
- 2.4.12 [C17] Minimise the number of MDP opponents who received an upfloat two rounds before.
- 2.4.13 [C18] Minimise the score differences (taken in descending order) of MDPs who received a downfloat the previous round.
- 2.4.14 [C19] Minimise the score differences (taken in descending order) of MDP opponents who received an upfloat the previous round.
- 2.4.15 [C20] Minimise the score differences (taken in descending order) of MDPs who received a downfloat two rounds before.
- 2.4.16 [C21] Minimise the score differences (taken in descending order) of MDP opponents who received an upfloat two rounds before.

3. Pairing Process for a Bracket

3.1 Parameter Definitions

- 3.1.1 M0 is the number of MDP(s) coming from the previous bracket. It may be zero.
- 3.1.2 MaxPairs is the maximum number of pairs that can be produced in the bracket under consideration (see [C6], Article 2.4.1).
 - Note: MaxPairs is usually equal to the number of players divided by two and rounded downwards. However, if, for instance, M0 is greater than the number of resident players, MaxPairs is at most equal to the number of resident players.
- 3.1.3 M1 is the number of MDP(s) that are paired in the bracket.

Note: M1 is usually equal to the number of MDPs coming from the previous bracket, which may be zero. However, if, for instance, M0 is greater than the number of resident players, M1 is at most equal to the number of resident players. M1 can never be greater than MaxPairs.

3.2 Subgroups (Original Composition)

- 3.2.1 To make the pairing, each bracket will be usually divided into two subgroups, called S1 and S2.
- 3.2.2 S1 initially contains a group of players (sorted according to Article 1.2). If the bracket is homogeneous, the group consists of the first MaxPairs players in ascending order of TPN, otherwise it consists of the first set of M1 pairable MDPs as defined by Article 4.4.2.
- 3.2.3 S2 initially contains all the remaining resident players.
- 3.2.4 When M1 is less than M0, some MDPs are not included in S1. The excluded MDPs (in number of M0 M1) who are neither in S1 nor in S2 are said to be in a *Limbo*.

Note: the players in the Limbo cannot be paired in the bracket and are thus bound to double-float.

3.3 Preparation of the Candidate

- 3.3.1 S1 players are tentatively paired with S2 players, the first one from S1 with the first one from S2, the second one from S1 with the second one from S2 and so on.
- 3.3.2 In a homogeneous bracket: the pairs formed as explained in Article 3.3.1 and all the players who remain unpaired (bound to be downfloaters) constitute a candidate (pairing).
- 3.3.3 In a heterogeneous bracket: the pairs formed as explained in Article 3.3.1 match M1 MDPs from S1 with M1 resident players from S2. This is called an MDP-Pairing. The remaining resident players (*if any*) give rise to the remainder (see Article 1.3), which is then paired with the same rules used for a homogeneous bracket.
 - Note: M1 may sometimes be zero. In this case, S1 will be empty and the MDP(s) will all be in the Limbo. Hence, the pairing of the heterogeneous bracket will proceed directly to the remainder.
- 3.3.4 A candidate (pairing) for a heterogeneous bracket is composed by an MDP-Pairing and a candidate for the ensuing remainder. All players in the Limbo are bound to be downfloaters.

3.4 Evaluation of the Candidate

3.4.1 If the candidate built as shown in Article 3.3 complies with all criteria from [C1] to [C5] (see Articles 2.1 to 2.3), and all the quality criteria from [C6] to [C21] (see Article 2.4) are fulfilled, the candidate is called "perfect" and is (immediately) accepted. Otherwise, apply Article 3.5 in

order to find a perfect candidate; or, if no such candidate exists, apply Article 3.8.

3.5 Actions when the Candidate is not perfect

- 3.5.1 The composition of S1, Limbo and S2 has to be altered in such a way that a different candidate can be produced.
- 3.5.2 Articles 3.6 (for homogeneous brackets and remainders) and 3.7 (for heterogeneous brackets) define the precise sequence in which the alterations must be applied.
- 3.5.3 After each alteration, a new candidate shall be built (see Article 3.3) and evaluated (see Article 3.4).

3.6 Alterations in Homogeneous Brackets or Remainders

3.6.1 Alter the order of the players in S2 with a transposition (see Article 4.2). If no more transpositions of S2 are available for the current S1, alter the original S1 and S2 (see Article 3.2) applying an exchange of resident players between S1 and S2 (see Article 4.3) and reordering the newly formed S1 and S2 according to Article 1.2.

3.7 Alterations in Heterogeneous Brackets

3.7.1 Operate on the remainder with the same rules used for homogeneous brackets (see Article 3.6).

Note: The original subgroups of the remainder, which will be used throughout all the remainder pairing process, are the ones formed right after the MDP-Pairing. They are called S1R and S2R (to avoid any confusion with the subgroups S1 and S2 of the complete heterogeneous bracket).

- 3.7.2 If no more transpositions and exchanges are available for S1R and S2R, alter the order of the players in S2 with a transposition (see Article 4.2), forming a new MDP-Pairing and possibly a new remainder (to be processed as written in Article 3.4.1).
- 3.7.3 If no more transpositions in S2 are available for the current S1, alter, if possible (i.e. if there is a Limbo), the original S1 and Limbo (see Article 3.2), selecting the next set of pairable MDPs according to Article 4.4.2 and restoring S2 to its original composition.

3.8 Actions when no Perfect Candidate Exists

3.8.1 Choose the best available candidate. In order to do so, consider that a candidate is better than another if it better satisfies the PAB Criterion ([C5], see Article 2.3) or a quality criterion ([C6]-[C21], see Article 2.4) of higher priority; or, all quality criteria being equally satisfied, it is generated earlier than the other one in the sequence of the candidates (see Articles 3.6 or 3.7).

4. Rules for the Sequential Generation of the Pairings

4.1 In-Bracket Sequence-Number (BSN)

4.1.1 Before any transposition or exchange take place, all players in the bracket or in the remainder shall be tagged with consecutive BSNs representing their respective ranking order (according to Article 1.2) in the bracket (i.e. 1, 2, 3, 4, ...).

4.2 Transpositions in S2

- 4.2.1 A transposition is a change in the order of the BSNs (all representing resident players) in S2.
- 4.2.2 All the possible transpositions are sorted depending on the lexicographic value of their first N1 BSN(s), where N1 is the number of BSN(s) in S1.

Note: The remaining BSN(s) of S2 are ignored in this context, because they represent players bound to constitute the remainder in case of a heterogeneous bracket; or bound to downfloat in case of a homogeneous bracket. For example, in a 11-player homogeneous bracket, it is 6-7-8-9-10, 6-7-8-9-11, 6-7-8-10-11, ..., 6-11-10-9-8, 7-6-8-9-10, ..., 11-10-9-8-7 (720 transpositions); if the bracket is heterogeneous with two MDPs, it is: 3-4, 3-5, 3-6, ..., 3-11, 4-3, 4-5, ..., 11-10 (72 transpositions).

4.3 Exchanges in Homogeneous Brackets or Remainders (original S1 ↔ original S2)

- 4.3.1 An exchange in a homogeneous bracket (also called a resident-exchange) is a swap of two equally sized groups of BSN(s) (all representing resident players) between the original S1 and the original S2.
- 4.3.2 In order to sort all the possible resident-exchanges, apply the following "comparison rules between two resident-exchanges" in the specified order (i.e. if a rule does not discriminate between two exchanges, move to the next one).

The priority goes to the exchange having:

- 1. the smallest number of exchanged BSN(s) (e.g. exchanging just one BSN is better than exchanging two of them).
- 2. the smallest difference between "the sum of the BSN(s) moved from the original S2 to S1 and the sum of the BSN(s) moved from the original S1 to S2" (e.g. in a bracket containing eleven players, exchanging 6 with 4 is better than exchanging 8 with 5; similarly exchanging 8+6 with 4+3 is better than exchanging 9+8 with 5+4; and so on).
- 3. the largest differing BSN among those moved from the original S1 to S2 (e.g. moving 5 from S1 to S2 is better than moving 4; similarly, 5-2 is better than 4-3; 5-4-1 is better than 5-3-2; and so on).

4. the smallest differing BSN among those moved from the original S2 to S1 (e.g. moving 6 from S2 to S1 is better than moving 7; similarly, 6-9 is better than 7-8; 6-7-10 is better than 6-8-9; and so on).

4.4 Set of pairable MDPs

- 4.4.1 A set of pairable MDP(s) is valid if it leaves a Limbo compliant with [C7] (see Article 2.4.2).
- 4.4.2 Valid sets of pairable MDP(s) are sorted according to their smallest differing BSN.

4.5 Next Element (follow-up of all Articles 4.2 to 4.4)

4.5.1 Any time an order has been established in accordance with Articles 4.2 to 4.4, any application of the corresponding article will pick the next element in the sorting order.

5. Colour Allocation Rules

- 5.1 The initial-colour is the colour determined by drawing of lots before the pairing of the first round.
- 5.2 For each pair apply (with descending priority):
 - 5.2.1 Grant both colour preferences.
 - 5.2.2 Grant the stronger colour preference (see Article 1.7). If both are absolute (topscorers, see Article 1.8) grant the wider colour difference (see Article 1.6).
 - 5.2.3 Alternate the colours to the most recent time in which one player had White and the other Black.
 - Note: Always consider Article 3.4 of the General Handling Rules for Swiss Tournaments.
 - 5.2.4 Grant the colour preference of the higher ranked player (see Article 1.2).
 - 5.2.5 If the higher ranked player has an odd TPN (see Article 1.1), give them the initial-colour; otherwise, give them the opposite colour.

DUBOV SYSTEM

Approved by the Council on 28/10/2025

Applied from 1st February, 2026

0. Preface

The Dubov Swiss Pairing System is designed to maximise the fair treatment of the players. This means that a player having more points than another player during a tournament should have a higher performance rating as well. If the average rating of all players is nearly equal, like in a round robin tournament, the goal is reached. As a Swiss System is a statistical system, this goal can only be reached approximately. The approach is the attempt to equalise the average rating of the opponents (ARO, see Article 1.7) of all players of a scoregroup. Therefore, the pairing of a round will now pair players who have a low ARO against opponents who have high ratings.

1. Introductory Remarks and Definitions

1.1 Rating

- 1.1.1 Each player must have a rating.
- 1.1.2 If a player does not have a rating, a provisional one must be assigned to the player by the Chief Arbiter.

1.2 Tournament Pairing Number ("TPN")

- 1.2.1 For the definition and management of TPNs, see Article 2 of the General Handling Rules for Swiss Tournaments (Initial Order and Late Entries).
- 1.2.2 Each time a player's rating is introduced or modified before the pairing of the fourth round, the Chief Arbiter must recalculate the TPNs.

1.3 Scoregroups and Pairing Brackets

- 1.3.1 A scoregroup is composed of all the players with the same score.
- 1.3.2 A (pairing) bracket is a group of players to be paired. It is composed of players coming from the same scoregroup (called resident players) and (possibly) of players coming from lower scoregroups (called upfloaters).

1.4 Pairing-Allocated Bye

See Article 3 of the Basic Rules for Swiss Systems (Should the number of participants to be paired be odd, one participant is not paired. This participant receives a pairing-allocated bye: no opponent, no colour and as many points as are rewarded for a win, unless the rules of the tournament state otherwise. This number of points shall be the same for all pairing-allocated byes).

1.5 Colour Difference

The colour difference of a player is the number of games played with White minus the number of games played with Black by this player.

1.6 Colour Preferences

The colour preference (also called: **due colour**) is the colour that a player should ideally receive for the next game.

- 1.6.1 An absolute colour preference occurs when a player's colour difference is greater than +1 or less than -1, or when a player had the same colour in the two latest rounds they played. The preference is for White when the colour difference is less than -1 or when the last two games were played with Black. The preference is for Black when the colour difference is greater than +1, or when the last two games were played with White.
- 1.6.2 A strong colour preference occurs when a player's colour difference is +1 (preference for Black) or -1 (preference for White).
- 1.6.3 A mild colour preference occurs when a player's colour difference is zero, the preference being to alternate the colour with respect to the previous game they played.
- 1.6.4 Players who did not play any games are considered to have a mild colour preference for Black.

1.7 Average Rating of Opponents (ARO)

- 1.7.1 ARO is defined for each player who has played at least one game. It is given by the sum of the ratings of the opponents the player met overthe-board (i.e. only played games are used to compute ARO), divided by the number of such opponents, and rounded to the nearest integer number (the higher, if the division ends for 0.5).
- 1.7.2 ARO is computed for each player after each round as a basis for the pairings of the next round.
- 1.7.3 If a player has yet to play a game, their ARO is zero.

1.8 Maximum Upfloater

- 1.8.1 A player is said to be a maximum upfloater when they have already been upfloated a maximum number of times (MaxT).
- 1.8.2 MaxT is a parameter whose value depends on the number of rounds in the tournament (Rnds), and is computed with the following formula:

$$MaxT = 2 + [Rnds/5]$$

where [Rnds/5] means Rnds divided by 5 and rounded downwards.

1.9 Round-Pairing Outlook

- 1.9.1 The pairing of a round (called round-pairing) is complete if all the players (except at most one, who receives the pairing-allocated bye) have been paired and the absolute criteria [C1] to [C3] (see Article 2.1) have been complied with.
- 1.9.2 The pairing process starts with the assignment of the pairing-allocatedbye (see Article 3.1) and continues with the pairing of all the

C.04.4.1 - DUBOV SYSTEM

scoregroups (see Article 3.2), in descending order of score, until the round-pairing is complete.

1.9.3 If it is impossible to complete a round-pairing, the Chief Arbiter shall decide what to do.

Note: Article 2 defines all the criteria that the pairing of a bracket has to satisfy (in order of priority).

Article 3 defines the pairing procedures and Article 4 the sorting criteria used in them.

Article 5 defines the colour allocation rules that determine which players will play with White.

2. Pairing Criteria

2.1 Absolute Criteria

No pairing shall violate the following absolute criteria:

- 2.1.1 [C1] See the Basic Rules for Swiss, Article 2 (Two participants shall not play against each other more than once).
- 2.1.2 [C2] See the Basic Rules for Swiss, Article 4 (A participant who has already received a pairing-allocated bye, or has already scored in one single round, without playing, as many points as rewarded for a win, shall not receive the pairing-allocated bye).
- 2.1.3 [C3] Two players with the same absolute colour preference (see Article 1.6.1) shall not meet (see the Basic Rules for Swiss, Articles 6 and 7).

2.2 Completion Criterion

2.2.1 [C4] A pairing complying with all the absolute criteria (see Article 2.1) shall always exist for all players not yet paired.

2.3 Quality Criteria

To obtain the best possible pairing for a bracket, comply as much as possible with the following criteria, given in descending priority:

- 2.3.1 [C5] Minimise the number of upfloaters.
- 2.3.2 [C6] Minimise the score differences (taken in descending order) in the pairs involving upfloaters, i.e. maximise the scores (taken in ascending order) of the upfloaters.
- 2.3.3 [C7] Minimise the number of players who do not get their colour preference.
- 2.3.4 [C8] Unless it is the last round, minimise the number of upfloaters who are maximum upfloaters (see Article 1.8).
- 2.3.5 [C9] Unless it is the last round, minimise the number of times a maximum upfloater is upfloated.

2.3.6 [C10] Unless it is the last round, minimise the number of upfloaters who upfloated in the previous round.

3. Pairing Procedures

3.1 Pairing-Allocated-Bye Assignment

The pairing-allocated-bye is assigned to the player who:

- 3.1.1 has neither received a pairing-allocated-bye, nor scored a (forfeit) win in the previous rounds (see [C2], Article 2.1.2)
- 3.1.2 allows a complete pairing of all the remaining players (see [C4], Article 2.2.1)
- 3.1.3 has the lowest score
- 3.1.4 has played the highest number of games
- 3.1.5 has the largest TPN (see Article 1.2)

3.2 Pairing Process for a Bracket

3.2.1 Determine the minimum number of upfloaters needed to obtain a legal pairing of all the (remaining) resident players of the scoregroup.

Note: A pairing is legal when the criteria [C1], [C3] and [C4] (see Articles 2.1.1, 2.1.3 and 2.2.1 respectively) are complied with.

3.2.2 Choose the first set of upfloaters (first in the order given by Article 4.2) that, together with the (remaining) resident players of this scoregroup, produces a pairing that complies at best with all the pairing criteria ([C1] to [C10], see Articles 2.1 to 2.3).

Note: To choose the best set of upfloaters, consider that the ensuing bracket (residents + upfloaters) is paired better than another one if it better satisfies a quality criterion ([C5] to [C10], see Article 2.3) of higher priority.

3.2.3 The players of the bracket are divided in two subgroups:

1. **G1**

This subgroup initially contains the players who have a colour preference for White, unless all the players in the bracket have yet to play a game (like, for instance, in the first round). In the latter case, this subgroup contains the first half of the players of the bracket (according to their TPN).

2. **G2**

This subgroup initially contains the remaining players of the bracket.

3.2.4 G1/G2 re-composition

1. If players from the smaller subgroup (or from G1, if their sizes are equal) must unavoidably be paired together, a number of players

- equal to the number of such pairs must be shifted from that subgroup into the other one. Find the **best** set of such players and proceed with the shift.
- Now, if the number of players in (the possibly new) G1 is different from the number of players in (the possibly new) G2, in order to equalise the size of the two subgroups, extract the <u>best</u> set of players from the larger subgroup, and shift those players into the smaller subgroup.

Note: <u>Best</u>, in both instances, means the first set of players (first in the order given by Article 4.3) that can yield a legal pairing that complies at best with [C7] (see Article 2.3.3).

3.2.5 Sort the players in (the possibly new) G1 in order of ascending ARO or, when AROs are equal, according to their ascending TPN. S1 is the subgroup resulting from such sorting.

Note: The sorting of G2 players is described in Article 4.3.

3.2.6 Choose T2, which is the first such transposition of G2 players (transpositions are sorted by Article 4.4) that can yield a legal pairing, according to the following generation rule: the first player of S1 is paired with the first player of T2, the second player of S1 with the second player of T2, and so on.

4. Sorting Criteria

4.1 Generalities

In the articles of this section, the schema below is followed:

- 4.1.1 A pool of P players is selected.
- 4.1.2 Each player in the pool is assigned a sequence number (from #1 to #P) according to a primary sorting criterion.
- 4.1.3 In order to select a set of K such players, the sets are sorted according to the smallest differing sequence number of their members. For instance, with K=2, the set {#1,#2} will precede {#1,#3}, the set {#1,#P} will precede {#2,#3}, and so on.

4.2 Sorting the Upfloaters

- 4.2.1 All those players that have a lower score than the resident players of the scoregroup to be paired, are possible upfloaters and constitute the selected pool (see Article 4.1.1).
- 4.2.2 Each possible upfloater receives a sequence number, according to their descending score and, when scores are equal, to their ascending TPN.
- 4.2.3 Compliance with criteria [C5] and [C6] (see Articles 2.3.1 and 2.3.2) determines the number of upfloaters and their scores in valid sets.

4.3 Sorting the Shifters

C.04.4.1 - DUBOV SYSTEM

Any player in the bracket having a colour preference for White (Black) is a possible White (resp. Black) shifter. The need for shifters arises when, in order to make or complete a pairing, some players seeking a colour are shifted to the subgroup of players initially seeking the other colour.

- 4.3.1 The possible White (resp. Black) shifters constitute the selected pool (see Article 4.1.1).
- 4.3.2 White seekers are sorted in order of ascending ARO or, when AROs are equal, ascending TPN. Black seekers are sorted according to their ascending TPN.
- 4.3.3 With the list sorted as in 4.3.2, assign the sequence numbers, starting with the player in the (remaining) middle of the list or, when two players are in the (remaining) middle, to the one with a higher position in the list.

Example: If the sorted list contains seven players (in order: A, B, C, D, E, F, G), #1 goes to D (middle of the seven players), #2 to C (higher between C and E, both in the middle of the remaining six players), #3 to E (middle of the remaining five players), #4 to B, #5 to F, #6 to A, #7 to G.

Rationale: Since the system tries to equalise the ARO of the White seekers (while the Black seekers are "tools" for reaching this goal), it is statistically better to shift White seekers with AROs in the middle (their ARO is probably already equalised), and Black seekers with ratings in the middle (because ARO equalisation is usually performed better by Black seekers with extreme ratings).

4.4 Sorting G2 Players (Transpositions)

- 4.4.1 The players involved are the ones that end up in the G2 subgroup after the manoeuvres described in Article 2.2.4. Such players constitute the selected pool (see Article 4.1.1).
- 4.4.2 The players in the G2 pool are assigned sequence numbers according to their ascending TPN. The sorted sets of G2 players are also called Transpositions.

Note: If, for instance, players A, B, C (listed according to their ascending TPN) are in G2, the different Transpositions are {A, B, C} {A, C, B} {B, A, C} {B, C, A} {C, A, B} and {C, B, A}, in that exact order.

5. Colour Allocation Rules

- 5.1 The initial-colour is the colour determined by drawing of lots before the pairing of the first round.
- 5.2 For each pair apply (with descending priority):

C.04.4.1 - DUBOV SYSTEM

- 5.2.1 When both players have yet to play a game, if the higher ranked player (i.e. the player who has more points or, when points are equal, has a smaller TPN) has an odd TPN, give them the initial-colour; otherwise, give them the opposite colour.
- 5.2.2 Grant both colour preferences.
- 5.2.3 Grant the stronger colour preference.
- 5.2.4 Alternate the colours to the most recent time in which one player had White and the other Black.
 - Note: Always consider Article 3.4 of the General Handling Rules for Swiss Tournaments.
- 5.2.5 Grant the colour preference of the higher ranked player (see Article 5.2.1).

BURSTEIN SYSTEM

Approved by the Council on 28/10/2025

Applied from 1st February, 2026

0. Preface

The BURSTEIN Swiss Pairing System is designed to maximise the fair treatment of players - in the sense that players having the same score should have met an average opposition as equal as possible during a tournament.

The system evaluates the strength of the opposition by means of an Index that only uses current data of the tournament, and it is based on tie-break derived method(s) (Ratings are taken into account only when everything else is equal - see Articles 1.7 and 1.8). If this Index gives a nearly equal evaluation of all players in the same scoregroup, the goal is reached. Nevertheless, since a Swiss System is a more or less statistical system, this goal can only be reached approximately.

The approach is to attempt to equalise the Index of all players in each scoregroup. Once the system is properly seeded (by pairing a number of early rounds using traditional methods - see Article 1.6), the Index becomes a good evaluator of players' strength. Henceforth, in each round, the system will try to pair players who have a high Index with players who have a low Index within the same scoregroup. Although the immediate effect of this manoeuvre is negligible (the Index is based on opponents' scores, and the players paired together often have equal scores), in the long run the desired effect is achieved (approximately, as mentioned above).

1. Introductory Remarks and Definitions

1.1 Tournament Pairing Number ("TPN")

For the definition and management of TPNs, see Article 2 of the General Handling Rules for Swiss Tournaments (Initial Order and Late Entries).

1.2 Scoregroups and Pairing Brackets

- 1.2.1 A scoregroup is composed of all the players with the same score.
- 1.2.2 A (pairing) bracket is a group of players to be paired. It is composed of players coming from a scoregroup (called resident players) and (possibly) of players who remained unpaired after the pairing of the previous bracket (called incoming floaters).

1.3 Pairing-Allocated Bye

See Article 3 of the Basic Rules for Swiss Systems (Should the number of participants to be paired be odd, one participant is not paired. This participant receives a pairing-allocated bye: no opponent, no colour and as many points as are rewarded for a win, unless the rules of the tournament state otherwise. This number of points shall be the same for all pairing-allocated byes).

1.4 Colour Difference

The colour difference of a player is the number of games played with White minus the number of games played with Black by this player.

1.5 Colour Preferences

The colour preference (also called: due colour) is the colour that a player should ideally receive for the next game. It can be determined for each player who has played at least one game.

- 1.5.1 An absolute colour preference occurs when a player's colour difference is greater than +1 or less than -1, or when a player had the same colour in the two last rounds they played. The preference is for White when the colour difference is less than -1 or when the last two games were played with Black. The preference is for Black when the colour difference is greater than +1, or when the last two games were played with White.
- 1.5.2 A strong colour preference occurs when a player's colour difference is +1 (preference for Black) or -1 (preference for White).
- 1.5.3 A mild colour preference occurs when a player's colour difference is zero, the preference being to alternate the colour with respect to the previous game they played.
- 1.5.4 Players who did not play any games have no colour preference (the preference of their opponents is granted).

1.6 Seeding Rounds

- 1.6.1 In order to properly seed the system, some initial rounds, called seeding rounds, are paired following the rules of the FIDE (Dutch) System.
- 1.6.2 The number of seeding rounds is equal to half the number of rounds in the tournament (rounded down) or 4 (four), whichever is lower.

1.7 Opposition Evaluation

During the pairing process, the players in a bracket need to be sorted (see Articles 2.1.5, 5.2.1, 5.2.5, 4.1), by applying some or all of the methods defined here, as directed by Article 1.8.1.

1.7.1 Sorting Methods

1. Buchholz

It is the sum of the (current) scores of the opponents the player met.

2. Sonneborn-Berger

It is the sum of the products given by the points the player earned against each opponent times the (current) scores of that opponent.

Note: If the standard scoring system is used, the above means the sum of the score of the opponents a player has defeated

plus half the sum of the score of the opponents with whom they have drawn.

1.7.2 Common Rules

1. Unplayed Games

If a player does not play in a round, the round shall be considered as one in which that player played against himself getting the result (win, draw, loss) that yields the same number of points as registered for the standings (and the future pairings).

Exception: if a player has a series of consecutive zero-point-byes up to the current round, each of the ones gathered in previous rounds, for the benefit of the player's actual over-the-board opponents, is considered as a draw.

2. Acceleration Methods

If virtual points are used (e.g. with the Baku Acceleration Method - see FIDE-approved Accelerated Systems), such virtual points shall be excluded from the computation of any method.

1.8 Ranking Order

After the seeding rounds (see Article 1.6), for pairings purposes only, the players in a bracket are ranked in order of, respectively:

- 1.8.1 (Opposition Evaluation) Index, which is a sequence of the methods seen in Article 1.7.1, to be applied in the following order (any subsequent method is used when preceding method(s) yield equal values):
 - 1. Buchholz (see Article 1.7.1.1)
 - 2. Sonneborn-Berger (see Article 1.7.1.2)
- 1.8.2 TPN, in ascending order (see Article 1.1)

Note: Players' scores are not used in the pairing ranking order.

1.9 Round-Pairing Outlook

Note: This outlook is valid after the seeding rounds (see Article 1.6) have been completed.

- 1.9.1 The pairing of a round (called round-pairing) is complete if all the players (except at most one, who receives the pairing-allocated bye) have been paired and the absolute criteria [C1] to [C3] (see Article 3.1) have been complied with.
- 1.9.2 The pairing process starts with the assignment of the pairing-allocated-bye (see Article 2.1) and continues by pairing the top scoregroup, and then bracket by bracket until all the scoregroups, in descending order, have been used and the round-pairing is complete.
- 1.9.3 If it is impossible to complete a round-pairing, the Chief Arbiter shall decide what to do.

Note: Article 2 defines all the criteria that the pairing of a bracket has to satisfy (in order of priority).

C.04.4.2 - BURSTEIN SYSTEM

Article 3 defines the pairing procedures and Article 4 the sorting criterion used in them.

Article 5 defines the colour allocation rules that determine which players will play with White.

2. Pairing Criteria

2.1 Absolute Criteria

No pairing shall violate the following absolute criteria:

- 2.1.1 [C1] See the Basic Rules for Swiss, Article 2 (Two participants shall not play against each other more than once).
- 2.1.2 [C2] See the Basic Rules for Swiss, Article 4 (A participant who has already received a pairing-allocated bye, or has already scored in one single round, without playing, as many points as rewarded for a win, shall not receive the pairing-allocated bye).
- 2.1.3 [C3] Two players with the same absolute colour preference (see Article 1.5.1) shall not meet (see the Basic Rules for Swiss, Articles 6 and 7).

2.2 Completion Criterion

2.2.1 [C4] A pairing complying with all the absolute criteria (see Article 2.1) shall always exist for all players not yet paired.

2.3 Quality Criteria

To obtain the best possible pairing for a bracket, comply as much as possible with the following criteria, given in descending priority:

- 2.3.1 [C5] Maximise the number of pairs (equivalent to: minimise the number of outgoing floaters).
- 2.3.2 [C6] Minimise the scores (taken in descending order) of the outgoing floaters.
- 2.3.3 [C7] Choose the outgoing floaters so that in the following bracket every criterion from [C1] to [C6] (see Articles 2.1 to 2.3.2) is complied with.
- 2.3.4 [C8] Minimise the number of players who do not get their colour preference.

3. Pairing Procedures

3.1 Pairing-Allocated-Bye Assignment

The pairing-allocated-bye is assigned to the player who:

- 3.1.1 has neither received a pairing-allocated-bye, nor scored a (forfeit) win in the previous rounds (see [C2], Article 2.1.2)
- 3.1.2 allows a complete pairing of all the remaining players (see [C4], Article 2.2.1)
- 3.1.3 has the lowest score

- 3.1.4 has played the highest number of games
- 3.1.5 occupies the lowest ranking (according to Article 1.8)

3.2 Pairing Process for a Bracket

3.2.1 Preparation

- 1. The pairing of a bracket is composed of pairs and outgoing floaters.
- 2. Determine the maximum number of pairs that can be obtained in the current bracket while complying with criteria from [C1] to [C5] (see Articles 2.1.1 to 2.3.1).
- 3. This automatically determines the number of outgoing floaters.

3.2.2 **Operations**

- 1. Choose the first pairing (as ordered according to Article 4) that complies best with all the pairing criteria ([C1] to [C8], see Articles 2.1 to 2.3).
- 2. Consider that a pairing is better than another if it better satisfies a quality criterion ([C5]-[C8], see Article 2.3) of higher priority.

4. Order of Pairings

- 4.1 All players in the bracket shall be tagged with consecutive in-bracket sequencenumbers (BSN for short) representing their respective ranking order (according to Article 1.8) in the bracket (i.e. 1, 2, 3, 4, ...).
- 4.2 The bracket is then extended, adding a number of virtual players equal to the number of outgoing floaters (see [C5], Article 2.3.1). All those virtual players are assigned a BSN equal to zero, meaning that their opponent shall float.
- 4.3 In order to sort all the possible pairings, apply the following rule: a pairing precedes another if its BSN #1's opponent has a larger BSN (i.e. lower ranking) than the other's. If BSN #1's opponents are the same, then compare BSN #2's opponents; and so on.

Note: Let us assume that the bracket contains six players (1 to 6) and only two pairs can be made, so there are two downfloaters. Then, we add two zeroes to indicate this. The first candidate pairing is 1-6, 2-5, 3-0, 4-0. Then we have, in order (left to right):

5. s.s. (1.5) t. t. 1.3.1.1/1																	
1-6, 2-4, 3	3-0, 5-0	1-6,	2-3,	4-0,	5-0	1-6,	2-0,	3-5,	4-0	1-6,	2-0,	3-4,	5-0	1-6,	2-0,	3-0,	4-5
1-5, 2-6, 3	3-0, 4-0	1-5,	2-4,	3-0,	6-0	1-5,	2-3,	4-0,	6-0	1-5,	2-0,	3-6,	4-0	1-5,	2-0,	3-4,	6-0
1-5, 2-0, 3	3-0, 4-6	1-4,	2-6,	3-0,	5-0	1-4,	2-5,	3-0,	6-0	1-4,	2-3,	5-0,	6-0	1-4,	2-0,	3-6,	5-0
1-4, 2-0, 3	3-5, 6-0	1-4,	2-0,	3-0,	5-6	1-3,	2-6,	4-0,	5-0	1-3,	2-5,	4-0,	6-0	1-3,	2-4,	5-0,	6-0
1-3, 2-0, 4	4-6, 5-0	1-3,	2-0,	4-5,	6-0	1-3,	2-0,	4-5,	6-0	1-3,	2-0,	4-0,	5-6	1-2,	3-6,	4-0,	5-0
1-2, 3-5, 4	4-0, 6-0	1-2,	3-4,	5-0,	6-0	1-2,	3-0,	4-6,	5-0	1-2,	3-0,	4-5,	6-0	1-2,	3-0,	4-0,	5-6
1-0, 2-6, 3	3-5, 4-0	1-0,	2-6,	3-4,	5-0	1-0,	2-6,	3-0,	4-5	1-0,	2-5,	3-6,	4-0	1-0,	2-5,	3-4,	6-0
1-0, 2-5, 3	3-0, 4-6	1-0,	2-4,	3-6,	5-0	1-0,	2-4,	3-5,	6-0	1-0,	2-4,	3-0,	5-6	1-0,	2-3,	4-6,	5-0
1-0, 2-3, 4	4-5, 6-0	1-0,	2-3,	4-0,	5-6	1-0,	2-0,	3-6,	4-5	1-0,	2-0,	3-5,	4-6	1-0,	2-0,	3-4,	5-6.

5. Colour Allocation Rules

C.04.4.2 - BURSTEIN SYSTEM

- 5.1 The initial-colour is the colour determined by drawing of lots before the pairing of the first round.
- 5.2 For each pair apply (with descending priority):
 - 5.2.1 When both players have yet to play a game, if the higher ranked player (according to Article 1.8) has an odd TPN, give them the initial-colour; otherwise, give them the opposite colour.
 - 5.2.2 Grant both colour preferences.
 - 5.2.3 Grant the stronger colour preference.
 - 5.2.4 Alternate the colours to the most recent time in which one player had White and the other Black.
 - Note: Always consider Article 3.4 of the General Handling Rules for Swiss Tournaments.
 - 5.2.5 Grant the colour preference of the higher ranked player (see Article 1.8).

LIM SYSTEM

Approved by the General Assembly of 1987

Amended by the 1988, 1989, 1997, 1998 General Assemblies and 1999 Executive Board.

Approved by the Council on 28/10/2025

Applied from 1st February, 2026

General Pairing Rules

1. Awarding the pairing-allocated bye

1.1 In addition of what is stated in Article 3 of the Basic Rules for Swiss Systems, the pairing-allocated bye is awarded to the player with the lowest rank in the lowest scoregroup.

2. Pairing a Scoregroup

- 2.1 Two players who have not yet played each other are said to be compatible provided that the pairing will not require either player to have the same colour in three successive rounds, or to have three more of one colour than the other.
- 2.2 The players with the same score form a scoregroup. The Median Scoregroup is the scoregroup with players having the score equal to half the number of rounds that have been played. Pairing begins with the highest scoregroup and proceeds downward until just before the Median Scoregroup, then continues with the lowest scoregroup and proceeds upwards to the Median Scoregroup which is paired last. The Median-Scoregroup is paired downward.
- 2.3 Before the players in a scoregroup are paired, the players in the scoregroup who have no suitable opponents for the following reasons are identified and transferred to a neighbouring scoregroup:
 - 2.3.1 they have already played all the players of their scoregroup; or
 - 2.3.2 they have already received two more of one colour over an equal allocation and there is no compatible opponent available in the scoregroup to enable them to have a permissible colour; or
 - 2.3.3 they have already received the same colour in the previous two rounds and there is no compatible player in the scoregroup to enable them to have the alternate colour; or
 - 2.3.4 it is necessary to make even the number of players in the scoregroup

Such a transferred player is described as a floater. Rules on how to select the floater, if a choice is available, are given in the section on "Floater Selection Rules" (Article 3).

2.4 The players in a scoregroup, after transfer of players where necessary, are arranged in the order of their pairing numbers and the players in the top half are tentatively paired with the players in the bottom half. These pairings are said to be proposed pairings, to be confirmed after scrutiny for compatibility and proper

- colour. If the players in a scoregroup are numbered: 1, 2, 3 ... n, then the proposed pairings are (ignoring colours): 1 v (n/2 + 1), 2 v (n/2 + 2), 3 v (n/2 + 3) ... n/2 v n.
- 2.5 Where a proposed pairing would result in the pairing of players who have already played each other, the lower numbered player of the two is exchanged for another within the same scoregroup. Further exchanges of opponents may be made to allow alternation or equalisation of colours where possible. How players are exchanged is described in the "Exchange Rules" (Article 4).

2.6 Pairing a blocked median scoregroup

If the median scoregroup cannot be paired, it should be extended step by step under the following rules:

- 2.6.1 if the number of floaters from higher scoregroups is larger than the number of floaters from lower scoregroups the next pairing of the lower scoregroup shall be cracked and the players of this pairing shall be treated as additional floaters from the lower scoregroup. Then the pairing of the median scoregroup is started again.
- 2.6.2 if the above condition is not fulfilled, then the next pairing of the higher scoregroup shall be cracked and the players of this pairing shall be treated as additional floaters from the higher scoregroup. Then the pairing of the median scoregroup is started again.

3. Floater Selection Rules

3.1 The "floater" is a player who is transferred to another scoregroup in accordance with Article 2.3, or because a compatible opponent cannot be found for the player despite exchanges in the scoregroup.

3.2 Floater Selection

- 3.2.1 When pairing proceeds downward, the floater is transferred to the next lower scoregroup. When pairing proceeds upwards, the floater is transferred to the next higher scoregroup.
- 3.2.2 When making even a scoregroup, determine the due colours of the players and select as the floater a player who would tend to equalise the number of players due different colours.
- 3.2.3 (In Maxi-tournaments, when pairing downward, the difference in rating between the chosen player and the lowest numbered player in the scoregroup must differ by 100 points or less, otherwise the lowest numbered player in the scoregroup is chosen as the floater. When pairing upwards, the difference in rating between the player chosen and the highest numbered player in the scoregroup must differ by 100 points or less, otherwise the highest numbered player is chosen as the floater.)
- 3.2.4 If the number of players due White equals the number of players due Black, the lowest numbered player is chosen as the floater when pairing

downward, and the highest numbered player is chosen as the floater when pairing upwards.

- 3.3 If there is a choice as to which player floats to a lower scoregroup, the player chosen is the lowest numbered player in the scoregroup who has a compatible opponent in the lower scoregroup, after excluding the opponents of other floaters who have higher scores or higher pairing numbers than the proposed floater.
- 3.4 If there is a choice as to which player floats to a higher scoregroup, the player chosen is the highest numbered player in the scoregroup who has a compatible opponent in the higher scoregroup, after excluding the opponents of other floaters who have lower scores or lower pairing numbers than the proposed floater.
- 3.5 If a proposed floater has no compatible opponent in the adjacent scoregroup, they shall, if possible, be exchanged for another player in their scoregroup; otherwise, they shall be floated to a further scoregroup.
- 3.6 When pairing a group that includes floaters from a higher scoregroup, the floater with the highest score is paired first, or the floater with the highest pairing number, if scores are equal.
 - 3.6.1 When pairing a group that includes down-floaters (DF) from a higher scoregroup, the floater with the higher pairing number is paired first.
 - 3.6.2 When pairing a group with DF coming from different higher scoregroups, the floater coming from the highest score group is paired first (not always the one with the highest pairing number).
 - 3.6.3 When there are DF and UF (up-floaters) in the same scoregroups (this should normally happen in the median scoregroup) in the upper half of scoregroups or in the median group, first pair the DF, then the UF and finally the remaining players.
- 3.7 When pairing a group that includes floaters from a lower scoregroup, the floater with the lowest score is paired first, or the floater with the lowest pairing number, if scores are equal.
 - 3.7.1 When pairing a group that includes UF from a lower scoregroup (in the 2nd half) the floater with the lowest pairing number is paired first.
 - 3.7.2 When pairing a group that includes UF coming from different lower groups, the UF coming from the lowest scoregroup is paired first (this is not always the player with the highest pairing number).
 - 3.7.3 When there are UF and DF in the same score group in the second half of scoregroups, first pair the UF, then the DF, and finally the other remaining players.
- 3.8 When pairing downward, the floater is paired with the highest numbered player available who is due the alternate colour (provided, in Maxi-tournaments, that the ratings of proposed opponents who are exchanged for this purpose differ by 100 points or less). When pairing upwards, the floater is paired with the lowest

C.04.4.3 - LIM SYSTEM

numbered player available who is due the alternate colour (provided, in Maxitournaments, that the ratings of proposed opponents who are exchanged for this purpose differ by 100 points or less).

3.9 Type of Floaters

- 3.9.1 Due to their origin and their compatibility in the adjacent scoregroup there are four types of floaters listed in descending order of disadvantages.
 - a) a floater who has already floated to the scoregroup just being handled and has no compatible opponent in the adjacent scoregroup.
 - b) a floater who has already floated to the scoregroup just being handled and has a compatible opponent in the adjacent scoregroup.
 - c) a floater who has no compatible opponent in the adjacent scoregroup.
 - d) a floater who has a compatible opponent in the adjacent scoregroup.
- 3.9.2 If there is a choice, the floaters should be chosen to minimise the disadvantages using the following priorities:
 - a) avoid floater(s) of type a
 - b) avoid floater(s) of type b
 - c) avoid floater(s) of type c
- 3.10 A floater who has floated the round just before shall not be floated due to Article 2.3.4 provided:
 - 3.10.1 this will not produce other floaters of the types a, b, c of Article 3.9
 - 3.10.2 this will not decrease the number of pairings of that scoregroup

4. Exchange Rules

- 4.1 The proposed pairings of players obtained according to Article 2.4 are scrutinised in turn for compliance with the compatibility statement (see Article 2.1). And,
 - 4.1.1 when pairing downward, scrutiny of proposed pairings begins with the highest numbered player; if the pairing is found not to comply with Article 2.1, the lower numbered player is exchanged until a compatible pairing is found; or,
 - 4.1.2 when pairing upwards, scrutiny of proposed pairings begins with the lowest numbered player; if the pairing is found not to comply with Article 2.1, the higher numbered player is exchanged until a compatible pairing is found.
- 4.2 In the following example of a scoregroup with six players, and pairing downward, the attempt is first made to find a compatible opponent for Player #1, the highest numbered player in the scoregroup.

Six players in a scoregroup with proposed pairings as follows:

1 v 4

2 v 5

3 v 6

If the pairing 1 v 4 is not compatible, for example, because the players had met in an earlier round, the positions of Player #4 and Player #5 are exchanged so that we have:

1 v 5

2 v 4

3 v 6

If the pairing 1 v 5 is also not compatible, a further exchange is made. The original proposed pairing and possible exchanges made to find a compatible opponent for Player #1 are as follows:

Proposed Pairing (col. 1) and Possible exchanges to find compatible opponent for #1

```
1 v 4 1 v 5 1 v 6 1 v 3 1 v 2 2 v 5 2 v 4 2 v 4 2 v 5 3 v 5 3 v 6 3 v 6 3 v 5 4 v 6 4 v 6
```

4.3 After a compatible opponent, for example, #6, has been found for Player #1, the proposed pairing for Player #2 is scrutinised. Exchanges to find a compatible opponent for Player #2 are as follows:

Proposed Pairing (col. 1) and Possible exchanges to find compatible opponent for #2

```
1 v 6 1 v 6 1 v 6 1 v 3 1 v 2 2 v 4 2 v 5 2 v 3 2 v 6 3 v 5 3 v 5 4 v 5 4 v 6
```

- The exchanges to find a compatible opponent for Player #2 must at the same time leave Player #1 with a compatible opponent. If this cannot be done, for example, if Player #1 and Player #2 have previously played each other and all the other players except Player #6, then the original pairing of Player #1 with Player #6 is retained, and Player #2 is floated. And,
 - 4.4.1 if the scoregroup originally had uneven members and the lowest numbered player was floated to make even the number of players in the scoregroup, #2 is exchanged with the floater, originally #7 in the scoregroup, or,
 - 4.4.2 if the scoregroup was originally even, then the lowest numbered player remaining must be floated in company with #2 to maintain an even number of members in the scoregroup.

5. Colour Allocation Rules

- 5.1 Where possible, and by means of exchanges, each player shall be given the alternate colour; at the end of each even-numbered round each player shall have had an equal number of Whites and Blacks. Moreover,
 - 5.1.1 no player shall be given the same colour in three successive rounds, and
 - 5.1.2 no player shall be given three more of one colour than the other.
- 5.2 After the first scrutiny and exchanges necessary to establish that all pairings in a scoregroup are new pairings, a second scrutiny with exchanges where necessary

is undertaken to give each player, if possible, the alternating colour and at the same time, the equalising colour.

- 5.3 If one of the players in a pairing had the same colour in the previous two rounds, this player must be given the alternating colour. If both players had the same colour in the previous two rounds and compatible opponents in the scoregroup are not available, then one or both players must be floated.
- 5.4 If both players in a pairing had the same colour in the previous round, then the colours they had in earlier rounds, going back in sequence, shall decide who is given the alternate colour. If players in the median scoregroup or above had identical histories, then the higher ranked is given the alternate colour, or, in even-numbered rounds, the equalising colour. If the players below the median scoregroup had identical histories, then the lower ranked player is given the alternate colour, or, in even numbered rounds, the equalising colour.
- 5.5 In the odd-numbered rounds, whenever possible, each player shall be given the colour which gives them one more only of one colour than the other.
- 5.6 In the even-numbered rounds, whenever possible, each player shall be given the colour that gives them an equal number of Whites and Blacks.
 - When both players of a pairing are due the same equalising colour, and further exchanges are not possible, the colour history will decide who is given the equalising colour, as in Article 5.4. One player will then have two more of one colour than the other colour.
 - This is allowed but care must be taken not to violate Articles 5.1.1 and 5.1.2, and to equalise the player's colours at the earliest opportunity.
- 5.7 (In Maxi-tournaments, an exchange of opponents to find, for example, one who is due the alternate colour is allowed only if the ratings of the opponents to be exchanged differ by 100 points or less.)

6. Exceptions applicable to the last round

In the last round, Article 5 of the Basic Rules for Swiss Systems, requiring players with the same score to be paired if they had not met in an earlier round, shall have priority over alternation and equalisation of colours, even if it is necessary for one of the players to be given the same colour for the third round in succession, or to be given three more of one colour than the other.

Brief examples of pairing

7. Pairing Round One

- 7.1 If the number of players is uneven, the lowest rated player in the Pairing List is given the pairing-allocated bye.
- 7.2 The colour to be given to Player #1 is decided by drawing lots; the other oddnumbered players in the upper half of the Pairing List are then given the same colour as Player #1. Player #2 together with the other even-numbered players in the upper half of the Pairing List are given the other colour.

C.04.4.3 - LIM SYSTEM

Depending on the draw, the pairings for the first round in a tournament of forty players would be either 1 v 21, 22 v 2, 3 v 23, 24 v 4, ... 40 v 20; or 21 v 1, 2 v 22, 23 v 3, 4 v 24 ... 20 v 40, where the player having White is mentioned first. This is the only occasion when colours need be decided by lot.

7.3 Players who have won their games are each awarded one point; each of those who have drawn receives 0.5 point. Each of those who have lost receives 0 point.

8. Round Two

- 8.1 The players are arranged in groups of the same score.
- 8.2 If the number of players is uneven, then the pairing-allocated bye is awarded as in Article 1.
- 8.3 Pairing begins with the highest scoregroup (1 point), continues with the lowest scoregroup (0 point) and finishes with the Median Scoregroup (0.5 point).
 - Detailed instructions for pairing Round Two and subsequent rounds are above.

DOUBLE-SWISS SYSTEM

Approved by the Council on 28/10/2025

Applied from 1st February, 2026

0. Preface

Double-Swiss competitions are tournaments in which every pairing is a match between two players. The match consists of two games played in succession, with alternating colours and with points assigned for each game.

In a Double-Swiss competition, the usual results of a match are 2-0, $1\frac{1}{2}$ - $\frac{1}{2}$, 1- $\frac{1}{2}$, or 0-2. Also, since a game can (rarely) end $\frac{1}{2}$ -0, 0- $\frac{1}{2}$, or 0-0, other possible match results are $1\frac{1}{2}$ -0, 1- $\frac{1}{2}$, $\frac{1}{2}$ -1, 0- $1\frac{1}{2}$, 0-1, $\frac{1}{2}$ -0, 0- $\frac{1}{2}$, and 0-0.

A match ends by forfeit only if at least one player forfeits both games. In this case, the same pairing may be repeated in a later round. In all other cases, the match is considered as regularly played and, for the purposes of tie-breaks and standings, any forfeited (single) game shall be treated as played. (This rule does not apply to rating.)

Byes (requested or assigned) apply only to matches, never to individual games.

1. Introductory Remarks and Definitions

1.1 Tournament Pairing Number ("TPN")

For the definition and management of TPNs, see Article 2 of the General Handling Rules for Swiss Tournaments (Initial Order and Late Entries).

1.2 Order

For pairings purposes only, the players are ranked in order of, respectively

- 1.2.1 Score
- 1.2.2 TPN (in ascending order)

1.3 Scoregroups and Pairing Brackets

- 1.3.1 A scoregroup is composed of all the players with the same score.
- 1.3.2 A (pairing) bracket is an even numbered group of players all to be paired. It is composed of players coming from the same scoregroup (called resident players) and (possibly) of players coming from lower scoregroups (called upfloaters).

1.4 Pairing-Allocated-Bye (PAB)

Should the number of players to be paired be odd, one player is not paired. This player receives a pairing-allocated bye: no opponent, no colour, and as

many points as if the player had played a match winning a game and drawing the other, unless the rules of the tournament state otherwise. This number of points shall be the same for all pairing-allocated byes (See Article 3 of the Basic Rules for Swiss Systems).

1.5 Floaters

A floater is a player who plays against an opponent with a different score.

1.6 Colours

A player is said to have (had) a colour (White or Black) in a match if at least one game of the match was actually played and the player was scheduled to play the first game with that colour.

2. Pairing Criteria

2.1 Absolute Criteria

No pairing shall violate the following absolute criteria:

- 2.1.1 [C1] See the Basic Rules for Swiss, Article 2 (Two participants shall not play against each other more than once).
- 2.1.2 [C2] A player who has already received a pairing-allocated bye or won a match by forfeit (or been given a FIDE-deprecated full-point bye) shall not receive the pairing-allocated bye.

2.2 Completion Criterion

2.2.1 [C3] A pairing complying with all the absolute criteria (see Article 2.1) shall always exist for all players not yet paired.

2.3 Quality Criteria

In order to best pair all players of the top-scoregroup (see Article 3.2), comply as much as possible with the following criteria, given in descending priority:

- 2.3.1 [C4] Minimise the number of upfloaters.
- 2.3.2 [C5] Minimise the score differences (taken in descending order) in the pairs involving upfloaters, i.e. maximise the scores (taken in ascending order) of the upfloaters.
- 2.3.3 [C6] Unless all the players in the following scoregroup became or are upfloaters (thus this scoregroup is now empty), choose the set of upfloaters so that criteria [C1], [C3] and [C4] (see Articles 2.1.1, 2.2.1 and 2.3.1) are complied with in the bracket where this (not empty) scoregroup is paired.

Note: Only the mentioned scoregroup is involved, even though some of the upfloaters come from lower scoregroups.

- 2.3.4 [C7] With the exception of the last round, minimise the number of upfloaters who were floaters in the previous round (see Article 1.5).
- 2.3.5 [C8] With the exception of the last round, minimise the number of upfloaters' opponents who were floaters in the previous round (see Article 1.5).

3. Pairing Definitions and Rules

3.1 Legal Pairing

- 3.1.1 A pairing is legal when the absolute criteria [C1] and [C2] (see Article 3.1) are complied with.
- 3.1.2 During the pairing, the completion criterion [C.3] (see Article 3.2) is also to be complied with.

3.2 Top-Scoregroup

During the pairing, it is the group of one or more players who have the highest score among the players who are yet to be paired.

3.3 Round-Pairing Outlook

- 3.3.1 The pairing of a round (called round-pairing) is complete if all the players (except at most one, who receives the pairing-allocated bye) have been paired and the absolute criteria [C1] and [C2] (see Article 2.1) have been complied with.
- 3.3.2 The pairing process consists of the following steps:
 - 1. The first step in the pairing process is the assignment of the pairing-allocated-bye (if needed) by applying Article 3.4.
 - 2. Then, the top-scoregroup is combined, when needed, with a set of upfloaters (selected according to Article 3.5), to form a bracket that is paired according to Article 3.6.
 - 3. The previous step-2 is then repeated until the round-pairing is complete.
 - 4. Colours are then assigned according to Article 4.
- 3.3.3 If it is impossible to complete a round-pairing, the Chief Arbiter shall decide what to do.

3.4 Pairing-Allocated-Bye Assignment

The pairing-allocated-bye is assigned to the player who:

- 3.4.1 leaves a legal pairing for all players
- 3.4.2 has the lowest score
- 3.4.3 has played the highest number of matches

3.4.4 has the largest TPN

3.5 Selection of Upfloaters for the Top-Scoregroup

- 3.5.1 All players with a lower score than the resident players of the top-scoregroup are potential upfloaters.
- 3.5.2 Consider all sets of potential upfloaters that comply with [C4] and [C5] (see Articles 2.3.1 and 2.3.2).

Note: This somehow determines the number of upfloaters in the set and their scores.

- 3.5.3 In each set, the potential upfloaters, identified by their TPN, are first sorted by descending score and then, when scores are equal, by ascending TPN.
- 3.5.4 These sets are then sorted among themselves by the lexicographic order of their TPNs.

Example: Let's assume that 2,6,8 have 3 points, and 1,3,5 have 2.5 points. [C4] determines that a set of three upfloaters is needed, and [C5] determines that two upfloaters must have 3 points and the other 2.5 points. The possible set of upfloaters are: $\{2,6,1\} < \{2,6,3\} < \{2,6,5\} < \{2,8,1\} < \{2,8,3\} < \{2,8,5\} < \{6,8,1\} < \{6,8,3\} < \{6,8,5\}$, already sorted in the proper order.

3.5.5 Choose the first set that, together with the top-scoregroup, produces a legal pairing that also complies with criteria [C6] and [C7] (see Articles 2.3.3 and 2.3.4) - besides [C4] and [C5] (see Articles 2.3.1 and 2.3.2), which it complies with by construction.

3.6 Pairing of a Bracket

- 3.6.1 A pairing is a sequence of pairs that includes all players in the bracket. For each pair, the player with the smaller TPN is the top member of the pair; the player with the larger TPN is the bottom member of the pair.
- 3.6.2 A pairing is identified by the TPNs of the top members of each pair sorted in ascending order, followed by the TPNs of the bottom member of the corresponding pair.

Example: If 11-24 16-6 10-9 8-4 is a pairing, its identifier is 4 6 9 11 8 16 10 24.

- 3.6.3 Pairings are sorted by the lexicographic order of their identifiers.
- 3.6.4 Choose the first pairing that also complies with criteria [C1] and [C8] (see Articles 2.1.1 and 2.3.5 besides the other criteria, which it complies with by construction).

4. Colour Allocation Rules

- 4.1 The initial-colour is the colour determined by drawing of lots before the pairing of the first round.
- 4.2 In a pair, the higher-ranked-player ("HRP") is the player with the higher score or, if both players have the same score, the smaller TPN.
- 4.3 For each pair apply (with descending priority):
 - 4.3.1 When both players have yet to play a match, if the HRP has an odd TPN, give the HRP the initial-colour; otherwise, give the HRP the opposite colour.
 - 4.3.2 Give White to the player with the lower number of Whites.
 - 4.3.3 Alternate the colours to the most recent time in which one player had White and the other Black.

Note: Always consider Article 3.4 of the General Handling Rules for Swiss Tournaments.

- 4.3.4 Alternate the colour of the HRP from the HRP's last played round.
- 4.3.5 Alternate the colour of the HRP's opponent from the HRP's opponent last played round.
- 4.4 The player who gets White plays the first game of the match with White and the second with Black (see also the Preface and Article 1.6).

TEAM PAIRING SYSTEM

Approved by the Council on 28/10/2025

Applied from 1st February, 2026

0. Preface

The Swiss Pairing System Rules specified in the Basic Rules for Swiss Systems and in the Articles 1, 2.4, 2.5, 3 and 4 of the General Handling Rules for Swiss Tournaments are for individuals, but can also be applied mutatis mutandis to teams, with one significant exception: the Articles 6 and 7 of the Basic Rules for Swiss Systems never apply.

In fact, for teams, the colours are less important. This is mainly because individuals in a team can be substituted or shifted between the various boards, and because teams are often composed of an even number of players, resulting in each team having an equal number of players playing with White and Black. That is why the rules presented here display various lower-strength colour preferences than those described in the individual rules, and of different varieties, to facilitate various forms of team competitions. There may be competitions where colours have no importance at all (for instance because each individual plays one game with White and one with Black); other competitions where having a particular colour is not a decisive factor (for instance, because teams have an even number of players and all teams play in the same geographical place); and still others, where the colour is more meaningful (for instance, because the composition of the teams cannot be changed, or teams have an odd-number of players, or having a particular colour may mean a home or a road match). In any case, the colour will never be a factor so decisive as to prevent two teams from playing against each other. Therefore, there are no absolute colour preferences outlined in these regulations.

Articles 2.1-2.3 of the General Handling Rules for Swiss Tournaments, dealing with the initial order of the teams, have been deliberately omitted from the initial list shown above because there are too many variants to take into account to define an appropriate strength for teams, such as only using starters' ratings; including reserves; counting a fixed number of highest ratings; managing unrated players; and so on. In the end, it is preferable to leave any details out of the general rules and let the initial order of teams be determined by the rules of each specific competition.

1. Introductory Remarks and Definitions

1.1 Tournament Pairing Number ("TPN")

- 1.1.1 Each team must have a different TPN, from 1 to the TPN corresponding to the number of teams.
- 1.1.2 The rules of the team competition shall describe how to assign a TPN to each team. Otherwise, it is a decision of the Chief Arbiter.

Note: This provision overrides Articles 2.1 to 2.3 of the General Handling Rules for Swiss Tournaments.

1.1.3 Once defined, the TPN should not be modified (except as stated in Articles 2.4 and 2.5 of the General Handling Rules for Swiss Tournaments), unless the Chief Arbiter decides otherwise.

1.2 Score

- 1.2.1 The rules of the competition shall state which, between "match points" and "game points", is called "primary score" (or, more simply, "score"), and whether the other ("secondary score") is used for colour allocation (see Article 4.2.2).
- 1.2.2 The default is to use "match points" as the (primary) score and "game points" for colour allocation.

1.3 Scoregroups and Pairing Brackets

- 1.3.1 A scoregroup is composed of all the teams with the same score.
- 1.3.2 A (pairing) bracket is an even numbered group of teams all to be paired. It is composed of teams coming from the same scoregroup (called resident teams) and (possibly) of teams coming from lower scoregroups (called upfloaters).

1.4 Pairing-Allocated-Bye (PAB)

Should the number of teams to be paired be odd, one team is not paired. This team receives a pairing-allocated-bye: no opponent, no colour, and as many match points and game points as are rewarded for a draw, unless the regulations of the team competition state otherwise. These numbers of points shall be the same for all pairing-allocated byes (See Article 3 of the Basic Rules for Swiss Systems).

1.5 Floaters

A floater is a team that plays against an opponent with a different score.

1.6 Colour Difference (CD)

- 1.6.1 A team is said to have (had) a colour (White or Black) in a match if the match was actually played and the player on the first board was scheduled to play with that colour.
- 1.6.2 The colour difference of a team is the number of matches where the team had White minus the number of matches where the team had Black.

1.7 Colour Preference

Type A colour preferences are used unless the rules of the team competition specify that either Type B colour preferences shall be used, or colour preferences are not to be used at all.

1.7.1 Type A colour preferences

- 1. A team has a simple (Type A) colour preference for White if its CD is less than -1, or, being its CD 0 or -1, the team had Black in the last two played matches.
- 2. A team has a simple (Type A) colour preference for Black if its CD is more than +1, or, being its CD 0 or +1, the team had White in the last two played matches.
- 3. In all other situations, the team has no (Type A) colour preference.

1.7.2 Type B colour preferences

- 1. A team has a strong (Type B) colour preference for White if its CD is less than -1, or, being its CD 0 or -1, the team had Black in the last two played matches.
- 2. A team has a strong (Type B) colour preference for Black if its CD is more than +1, or, being its CD 0 or +1, the team had White in the last two played matches.
- 3. A team has a mild (Type B) colour preference for White if its CD is 1, or, if it is zero and it is not the last round, the team had Black in the last played match.
- 4. A team has a mild (Type B) colour preference for Black if its CD is +1, or, if it is zero and it is not the last round, the team had White in the last played match.
- 5. A team has no (Type B) colour preference when it has yet to play a match, or when its CD is zero when pairing for the last round.

2. Pairing Criteria

2.1 Absolute Criteria

No pairing shall violate the following absolute criteria:

- 2.1.1 [C1] See the Basic Rules for Swiss, Article 2 (Two participants shall not play against each other more than once).
- 2.1.2 [C2] A team that has already received a pairing-allocated bye or won a match by forfeit (or been given a FIDE-deprecated full-point bye) shall not receive the pairing-allocated bye.

2.2 Completion Criterion

2.2.1 [C3] A pairing complying with all the absolute criteria (see Article 2.1) shall always exist for all teams not yet paired.

2.3 Quality Criteria

In order to best pair all teams of the top-scoregroup (see Article 3.2), comply as much as possible with the following criteria, given in descending priority:

2.3.1 [C4] Minimise the number of upfloaters.

- 2.3.2 [C5] Minimise the score differences (taken in descending order) in the pairs involving upfloaters, i.e. maximise the scores (taken in ascending order) of the upfloaters.
- 2.3.3 [C6] Unless all the teams in the following scoregroup became or are upfloaters (thus this scoregroup is now empty), choose the set of upfloaters so that criteria [C1], [C3] and [C4] (see Articles 2.1.1, 2.2.1 and 2.3.1) are complied with in the bracket where this (not empty) scoregroup is paired.

Note: Only the mentioned scoregroup is involved, even though some of the upfloaters come from lower scoregroups.

- 2.3.4 [C7] With the exception of the last two rounds, minimise the number of upfloaters that were floaters in the previous round (see Article 1.5).
- 2.3.5 [C8] Minimise the number of teams whose colour preference, if any, is not fulfilled.
- 2.3.6 [C9] (Type B only) Minimise the number of teams whose strong colour preference, if any, is not fulfilled.
- 2.3.7 [C10] With the exception of the last two rounds, minimise the number of upfloaters' opponents that were floaters in the previous round (see Article 1.5).

3. Pairing Definitions and Rules

3.1 Legal Pairing

- 3.1.1 A pairing is legal when the absolute criteria [C1] and [C2] (see Article 3.1) are complied with.
- 3.1.2 During the pairing, the completion criterion [C.3] (see Article 3.2) is also to be complied with.

3.2 Top-Scoregroup

During the pairing, it is the group of one or more teams that have the highest score among the teams that are yet to be paired.

3.3 Round-Pairing Outlook

- 3.3.1 The pairing of a round (called round-pairing) is complete if all the teams (except at most one, which receives the pairing-allocated bye) have been paired and the absolute criteria [C1] and [C2] (see Article 2.1) have been complied with.
- 3.3.2 The pairing process consists of the following steps:
 - 1. The first step in the pairing process is the assignment of the pairing-allocated-bye (if needed) by applying Article 3.4.
 - 2. Then, the top-scoregroup is combined, when needed, with a set of upfloaters (selected according to Article 3.5), to form a bracket that is paired according to Article 3.6.

- 3. The previous step-2 is then repeated until the round-pairing is complete.
- 4. Colours are then assigned according to Article 4.
- 3.3.3 If it is impossible to complete a round-pairing, the Chief Arbiter shall decide what to do.

3.4 Pairing-Allocated-Bye Assignment

The pairing-allocated-bye is assigned to the team that:

- 3.4.1 leaves a legal pairing for all teams
- 3.4.2 has the lowest score
- 3.4.3 has played the highest number of matches
- 3.4.4 has the largest TPN

3.5 Selection of Upfloaters for the Top-Scoregroup

- 3.5.1 All teams with a lower score than the resident teams of the top-scoregroup are potential upfloaters.
- 3.5.2 Consider all sets of potential upfloaters that comply with [C4] and [C5] (see Articles 2.3.1 and 2.3.2).

Note: This somehow determines the number of upfloaters in the set and their scores.

- 3.5.3 In each set, the potential upfloaters, identified by their TPN, are first sorted by descending score and then, when scores are equal, by ascending TPN.
- 3.5.4 These sets are then sorted among themselves by the lexicographic order of their TPNs.
 - Example: Let's assume that 2,6,8 have 3 points, and 1,3,5 have 2.5 points. [C4] determines that a set of three upfloaters is needed, and [C5] determines that two upfloaters must have 3 points and the other 2.5 points. The possible set of upfloaters are: $\{2,6,1\} < \{2,6,3\} < \{2,6,5\} < \{2,8,1\} < \{2,8,3\} < \{2,8,5\} < \{6,8,1\} < \{6,8,3\} < \{6,8,5\}$, already sorted in the proper order.
- 3.5.5 Choose the first set that, together with the top-scoregroup, produces a legal pairing that also complies with criteria [C6] and [C7] (see Articles 2.3.3 and 2.3.4) besides [C4] and [C5] (see Articles 2.3.1 and 2.3.2), which it complies with by construction.

3.6 Pairing of a Bracket

3.6.1 A pairing is a sequence of pairs that includes all teams in the bracket. For each pair, the team with the smaller TPN is the top member of the pair; the team with the larger TPN is the bottom member of the pair.

- 3.6.2 A pairing is identified by the TPNs of the top members of each pair sorted in ascending order, followed by the TPNs of the bottom member of the corresponding pair.
 - Example: If 11-24 16-6 10-9 8-4 is a pairing, its identifier is 4 6 9 11 8 16 10 24.
- 3.6.3 Pairings are sorted by the lexicographic order of their identifiers.
- 3.6.4 Choose the first pairing that also complies with criteria [C1], [C8], [C9] and [C10] (see Articles 2.1.1 and 2.3.5 to 2.3.7 besides the other criteria, which it complies with by construction).

4. Colour Allocation Rules

- 4.1 The initial-colour is the colour determined by drawing of lots before the pairing of the first round.
- 4.2 The first-team is the team (first that applies):
 - 4.2.1 with the higher primary score; or
 - 4.2.2 with the higher secondary score (unless the rules of the competition state not to use it); or
 - 4.2.3 with the smaller TPN.
- 4.3 For each pair apply (with descending priority):
 - 4.3.1 When both teams have yet to play a match, if the first-team has an odd TPN, give it the initial-colour; otherwise, give it the opposite colour.
 - 4.3.2 If only one team has a colour preference, grant it.
 - 4.3.3 If the two teams have opposite colour preferences, grant them.
 - 4.3.4 (Type B only) If only one team has a strong colour preference, grant it.
 - 4.3.5 Give White to the team with the lower colour difference.
 - Note: -2 is lower than -1; +1 is lower than +2.
 - 4.3.6 Alternate the colours to the most recent time in which one team had White and the other Black.
 - Note: Always consider Article 3.4 of the General Handling Rules for Swiss Tournaments.
 - 4.3.7 Grant the colour preference of the first-team.
 - 4.3.8 Alternate the colour of the first-team from its last played round.
 - 4.3.9 Alternate the colour of the other team from its last played round.

FIDE-APPROVED ACCELERATED SYSTEMS

Approved by the Council on 28/10/2025

Applied from 1st February, 2026

0. Preface

In Swiss tournaments with a wide range of (mostly reliable) playing strengths, the results of the first round(s) are usually quite predictable. In the first round, only a few percent of the games, in an individual competition, or matches, in a team competition, have a result other than "win to the stronger part". The same may happen again in round two. It can be shown that, in title tournaments, this can prevent players from achieving norms.

An accelerated pairing is a variation of Swiss pairings in which the first rounds are modified in such a way as to overcome the aforementioned weaknesses of the Swiss system, without compromising the reliability of the final rankings.

It is not appropriate to design an entirely new pairing system for acceleration, but rather design a system that works together with existing FIDE-defined pairing systems. This result is normally achieved by rearranging score brackets in some way that does not only depend on the points that the participants have scored. For instance, one of the possible methods is to add so-called "virtual points" to the score of some higher rated participants (who are supposedly stronger) and henceforth build the score brackets based on the total score (real score + virtual points).

The following chapters will describe the methods that were statistically proven to accomplish the aforementioned goals. The Baku Acceleration Method is presented first, because it was the first that, through statistical analysis, was proven to be good and stable (and is also easy to explain).

Other accelerated methods may be added, as long as they can be proven, through statistical analysis, to get better results than already described methods or, if their effectiveness is comparable, to be simpler.

Unless explicitly specified otherwise, each described acceleration method is applicable to any Swiss Pairing System.

1. Baku Acceleration Method

1.1 Premise

The Baku Acceleration Method is applicable in any tournament where the standings are based on scoring point systems where the points for a win equal the points for two draws and the points for a loss are zero.

1.2 Initial Groups Division

Before the first round, the list of participants to be paired (properly sorted) shall be split in two groups, GA and GB. The first group (GA) shall contain the first half of the participants, rounded up to the nearest even number. The second group (GB) shall contain all the remaining participants.

C.04.7 - FIDE-APPROVED ACCELERATED SYSTEMS

Note: For instance, if there are 161 participants in the tournament, the nearest even number that comprises the first half of the participants (i.e. 80.5) is 82. The formula 2 * Q (2 times Q), where Q is the number of participants divided by 4 and rounded upwards, may be helpful in computing such number - that, besides being the number of GA participants, is also the tournament pairing number ("TPN") of the last GA participant.

1.3 Late Entries

- 1.3.1 If there are entries after the first round, those participants shall be accommodated in the pairing list according to Article 2 of the General Handling Rules for Swiss Tournaments (Initial Order and Late Entries).
- 1.3.2 The last GA-participant shall be the same participant as in the previous round.
- Note 1: In such circumstances, the TPN of the last GA-participant may be different by the one set accordingly to Article 1.2.
- Note 2: After the first round, GA may contain an odd number of participants.

1.4 Virtual Points

- 1.4.1 The "accelerated rounds" are the ones in the first half (rounded up) of the tournament.
- 1.4.2 Before pairing the first half (rounded up) of the accelerated rounds, all the participants in GA are assigned a number of points (called virtual points) equal to the number of points awarded for a win.
- 1.4.3 Such virtual points are halved before pairing the remaining accelerated rounds.

Note: Consequently, no virtual points are ever given to participants in GB, or to any participant after the last accelerated round has been played.

1.4.4 Examples:

- 1. In a nine-round individual tournament that uses the standard scoring point system, the accelerated rounds are five. The players in GA are assigned one virtual point in the first three rounds, and half virtual point in the next two rounds.
- 2. In an 11-round team competition with matchpoints [*] as the primary score (2 MP for win, 1 MP for draw), the teams in GA are assigned two virtual matchpoints in the first three rounds and one virtual matchpoint in the next three rounds.
 - [*] Note that if gamepoints were the primary score, the Baku Acceleration could not be used

1.5 Pairing Score

The pairing score of a participant (i.e. the value used to define the scoregroups and internally sort them - and, also, used to sort the boards, see Article 3.6 of General Handling Rules for Swiss Tournaments) is given by the sum of their standings points and the virtual points assigned to them.